Truss or Cantilever Sign Foundation Design Mahmoud Hailat, PE Division of Bridges - INDOT February 7th, 2018

Marti_evel

1

Overview

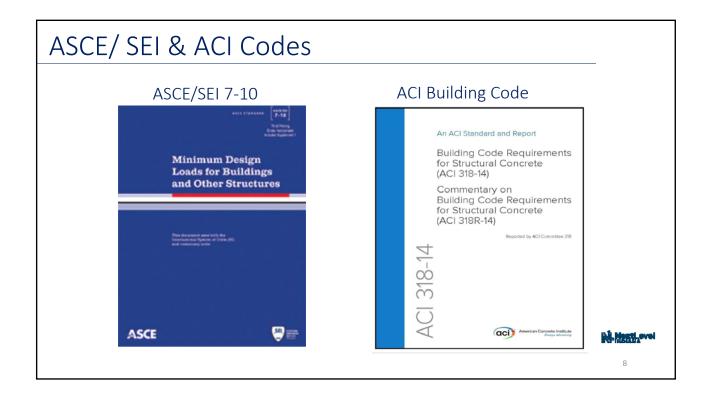
- Design Criteria
- Current Design Policy, Codes, IDM, Specifications, Standard Drawings.
- Geotechnical Requirements.
- Foundation Types, Selection, Location, Constraint
- Practice Pointers

Sign Support Structures

- Types, IDM:
 - box truss;
 - 2. sign cantilever structure;
 - 3. tri-chord truss structure;
 - 4. butterfly sign cantilever structure;
 - 5. dynamic message sign structure;
 - 6. monotube bridge sign structure;
 - 7. bridge-attached sign structure for large panel signs;
 - 8. bridge bracket for crossroad signing; and
 - 9. cable span sign structure.

2

Box Truss Structures



Messi evel

Current Policy

- Sign Structure Supports: Shall be designed Per AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals 2013 Edition. IDM 502-1.01(11)
- Sign Foundation: Should be Designed per LRFD Bridge Design Specifications IDM 502-1.01(12)
- Standard Drawings for Foundations are designed per LRFD <u>Bridge Design</u> Specifications.

9

Current Policy

- Shop Drawings for signs in the standard drawings should be submitted to Traffic Division for review and approval.
- Design calculations and shop drawings should be submitted for approval: for signs that require design and are not detailed in the standard drawings in geometry
- Geotechnical Investigation is required for overhead sign structures

AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires, & Traffic Signals

Table 3.4-1-Group Load Combinations

Group Load	Load Combination ^a	Percentage of Allowable Stress ^b
I	DL	100
II	DL + W	133
III	$DL + Ice + \frac{1}{2}(W)^c$	133
IV	Fatigue	d

11

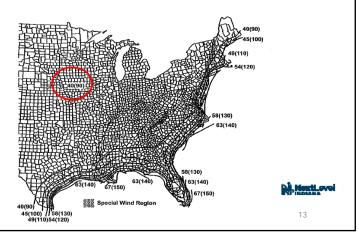
Design Criteria - Loads

AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires, & Traffic Signals

• Dead Load: IDM 502-1.01(11)

Dead Load:

Aluminum: 169 lb/ft³ Steel: 490 lb/ft³


Traffic message panel sign: 2.48 lb/ft², aluminum extruded panels 12-in. height.

Traffic message sheet sign: 2 lb/ft²

- Live Load: Standard Specification Section 3.6 → Live Load of 550 lb distributed over 2ft for walkway design only.
- Ice Load: <u>Shall Be</u> 3 lb/sft (~ 0.65") around all elements, one face of sign panel.

AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires, & Traffic Signals

- Wind Load: Basic Wind Speed 90 mph, 50 Year Service Life.
- Seismic Design: NOT Required
- Fatigue: Not required for Foundation.

Design Criteria - Loads

AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires, & Traffic Signals

3.8.1—Wind Pressure Equation

The design wind pressure shall be computed using the following equation:

$$P_z = 0.613K_zGV^2I_rC_d \text{ (Pa)}$$
 (3.8.3-1)

$$P_z = 0.00256K_zGV^2I_rC_d \text{ (psf)}$$

- Ir = Importance factor Table 3.8.3-1
- Kz = Height Exposure Factor Table 3.8.4-1
- G = Gust Effect Factor = 1.14
- Cd = Drag Coefficient Table 3.8.6-1

LRFD Specifications for Structural Supports for Highway Signs, Luminaires, & Traffic Signals

- Limit States
 - Service Limit State → Stress Limits, Cracking, & deformations (Wind)
 - Strength Limit State → Strength & Stability (No Wind)
 - Extreme Limit State → Survival of the structure under extreme (Wind)
 - Seismic Design: NOT Required LRFD 1.1

15

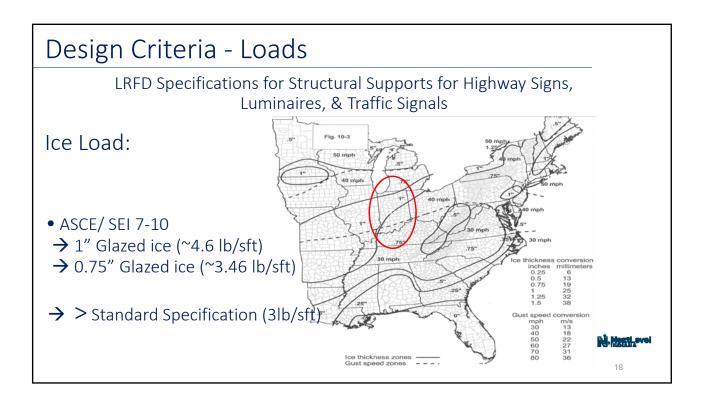
Design Criteria - Loads

LRFD Specifications for Structural Supports for Highway Signs, Luminaires, & Traffic Signals

Table 3.4-1—Load Combinations and Load Factors

500 lbs/sft on walkways only

			Perman	nent	Trans	ient			Fatigue		
Load Combination Limit State	Description	Reference Articles	Dead Com		Live Load (LL)	Wind (W)	Truck Gust (TrG)	Natural Wind Gust Vibration (NWG)	Vortex- Induced Vibration (VVW)	Combined Wind on High- level Towers	Galloping Induced Vibration (GVW)
			Max/Min	Mean				Арр	ly separatel	y	
Strength I	Gravity	3.5, 3.6, and 3.7			1.6						
Extreme I	Wind	3.5, 3.8, 3.9	1.1/0.9			1.0a					
Service I	Translation	10.4		1.0		1.0 ^b					
Service III	Crack control for Prestressed Concrete			1.0		1.00					
Fatigue I	Infinite-life	11.7		1.0			1.0	1.0	1.0	1.0	1.0
Fatigue II	Evaluation	17.5		1.0			1.0	1.0	1.0	1.0	1.0



LRFD Specifications for Structural Supports for Highway Signs, Luminaires, & Traffic Signals

Ice Load:

- LRFD: Ice Load due freezing rain and in-cloud icing May be applied:
 - Around the surfaces except one face of sign panels.
 - Owner shall specify special icing conditions.
 - LRFD Commentary: For extreme cases specified by the owner use ASCE/ SEI 7-10.

LRFD Specifications for Structural Supports for Highway Signs, Luminaires, & Traffic Signals

• Wind Load:

3.8.1—Wind Pressure Equation

The design wind pressure shall be computed using:

$$P_z = 0.00256K_zK_dGV^2C_d$$
 (psf) (3.8.1-1)

where

V is the basic wind speed (mph),

 K_z is the height and exposure factor defined in Article 3.8.4,

 K_d is the directionality factor defined in Article 3.8.5,

G is the gust effect factor defined in Article 3.8.6, and

 C_d is the drag coefficient defined in Article 3.8.7.

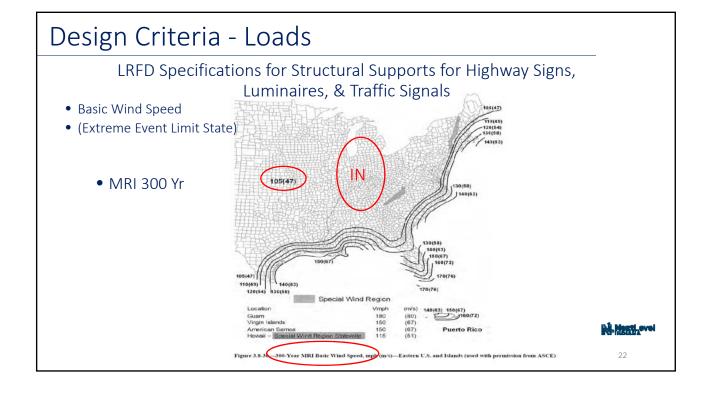
10

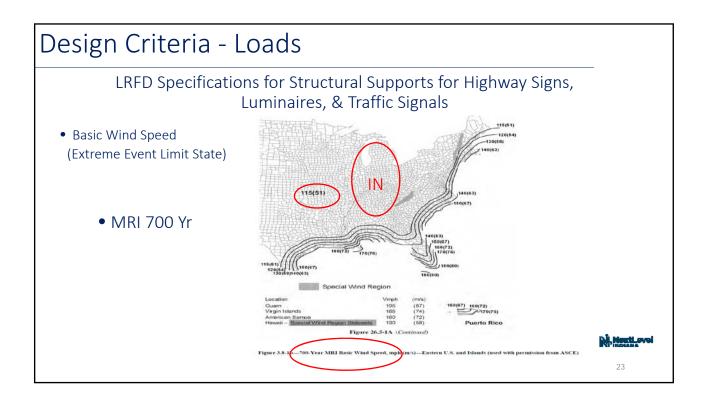
Design Criteria - Loads

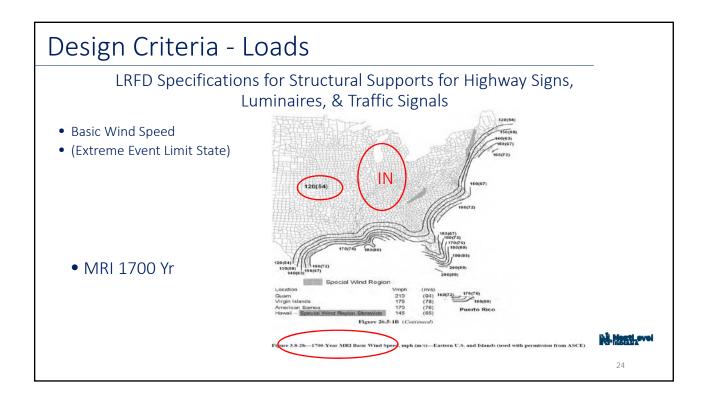
LRFD Specifications for Structural Supports for Highway Signs, Luminaires, & Traffic Signals

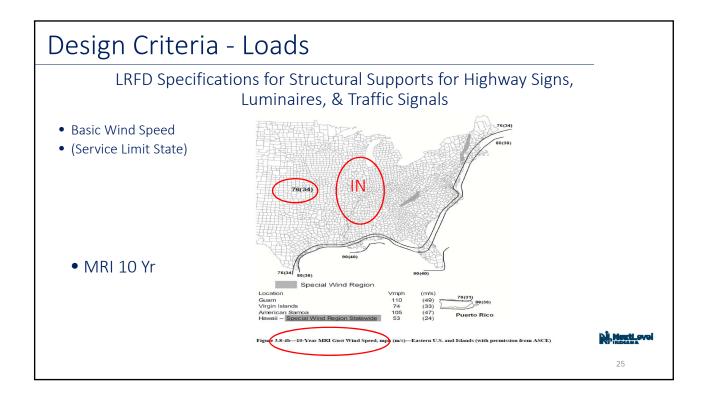
Wind Load

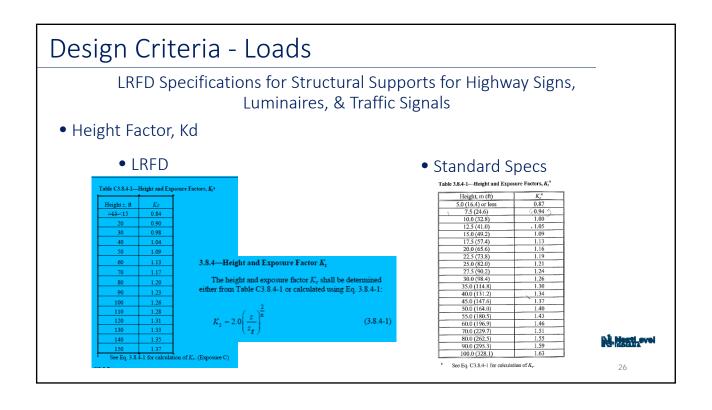
Table 3.8-1—Mean Recurrence Interval

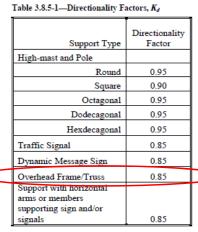

Risk Category Traffic Volume Typical High Low ADT<100 300 1700 300 100<ADT<1000 700 1700 300 **Years** 1000<ADT≤10000 700 1700 300 ADT>10000 1700 1700 300 Typical: Failure could cross travelway High: Support failure could stop a lifeline travelway


Low: Support failure could not cross travelway


Roadside sign supports: use 10-yr MRI, see Figure 3.8-4.


No. Martinevel



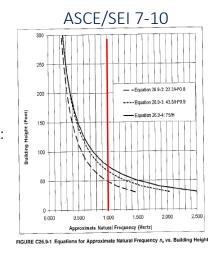


LRFD Specifications for Structural Supports for Highway Signs, Luminaires, & Traffic Signals

• Directionality Factor, Kd

0.7

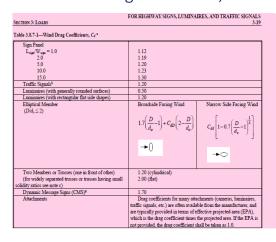
Design Criteria - Loads


LRFD Specifications for Structural Supports for Highway Signs, Luminaires, & Traffic Signals

- Wind Gust Factor, G
 - LRFD

3.8.6—Gust Effect Factor G

The gust effect factor, G, shall be taken as a minimum of 1.14.


- LRFD Commentary: Follow ASCE/ SEI 7-10 if:
 - Structure is Gust Sensitive:
 - Panel Height/Length > 4
 - Fundamental Frequency < 1.0 Hz

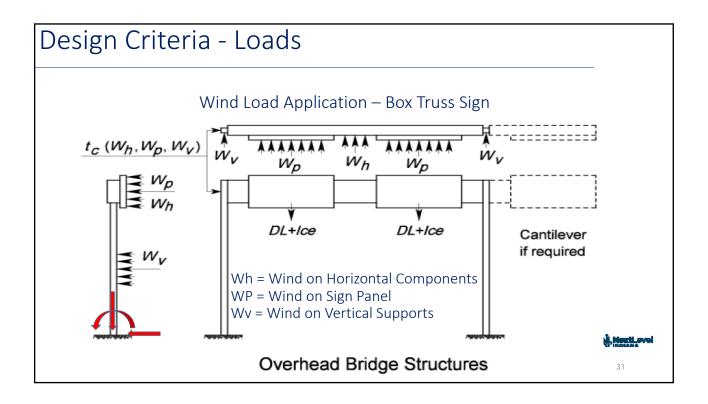
N. Marti, evel

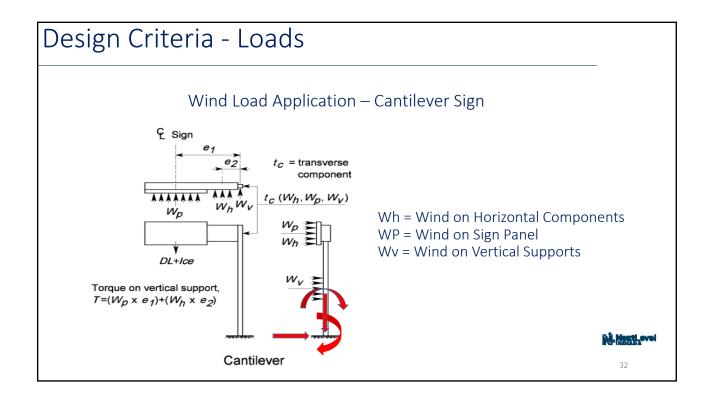
Design Criteria - Loads LRFD Specifications for Structural Supports for Highway Signs, Luminaires, & Traffic Signals

• Wind Drag Coefficient, Cd

Single Member or Truss Member	<u>C</u> ₂ Vd ≤ 39 mph-ft	39 mph-ft < <u>C</u> _v Vd < 78 mph-ft	$C_vVd \ge 78$ mph-ft
Cylindrical	1.10	$\frac{129}{(C_vVd)^{1.3}}$	0.45
Flat ^d	1.70	1.70	1.70
Hexdecagonal: 16-Sides $0 \le r_c < 0.26$	1.10	$\frac{1.37 + 1.08r_c - \frac{C_vVd}{145} - \frac{C_vVdr_c}{36}}{6}$	0.83 - 1.08
Hexdecagonal: 16-Sides $r_c \ge 0.26^{\circ}$	1.10	$0.55 + \frac{(78.2 - C_v Vd)}{71}$	0.55
Dodecagonal*: 12-Sides	1.20	$\frac{10.8}{(C_vVd)^{0.6}}$	0.79
Octagonal*: 8-Sides	1.20	1.20	1.20
Square	$2.0 - 6r_s$ [for $r_s < 0.125$]		
-▶□∃	$2.0 - 6r_s [\text{for } r_s < 0.125]$ $1.25 [\text{for } r_s \ge 0.125]$		
Diamond ^f	1.70 [for d = 0.33 & 0.42]		
	1.90 [for d ≥ 0.50]		

Design Criteria - Loads


LRFD Specifications Vs Standard Specifications


 $P_z = 0.00256K_zK_dGV^2C_d$ (psf)

- Basic Wind Speed, V for Extreme
- For Service

- Importance ≰actor, Ir (1.0)
- Height Factor, Kz Unchanged
- Directionality Factor, kd = 0.85 for overhead signs New
- Gust Wind Factor, G, Unchanged
- Drag Coefficient, Cd, Unchanged

Design Criteria - Geotechnical

Geotechnical Requirements - IDM CH 502

- Soil Borings Will be required for overhead structures to determine:
 - Soil Type: Sandy or Cohesive
 - Soil Bearing Capacity
 - Soil Friction Coefficient
- Foundations in Standard Drawings Reflects Minimum of:
 - Undrained Shear Strength 750 psf for Clay
 - Friction Angle of 30° for Sand

Design Criteria _ Geotechnical

• Broms' Method for Cohesive or Cohesionless Soil for Drilled shafts

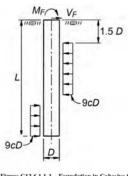
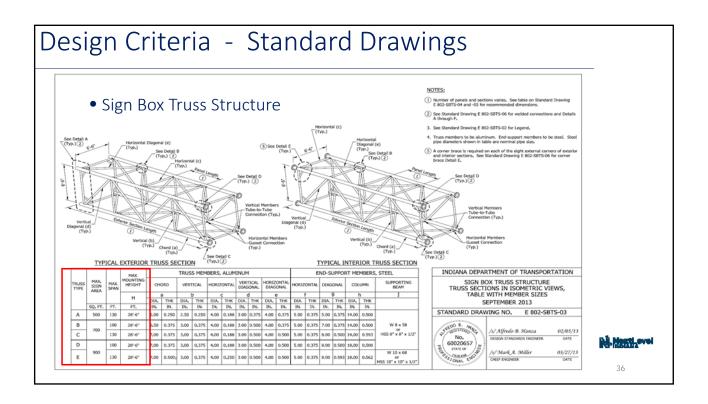
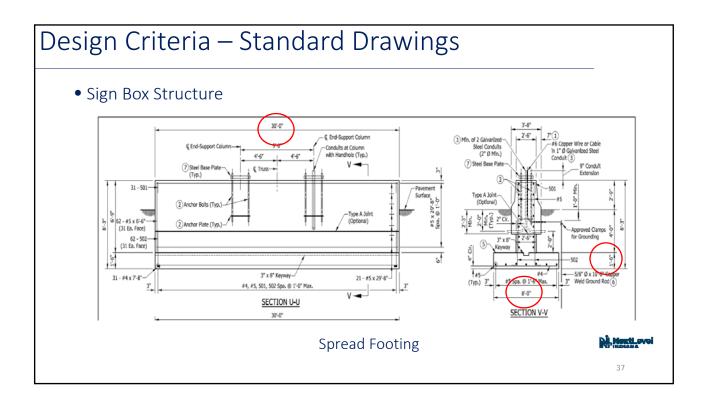
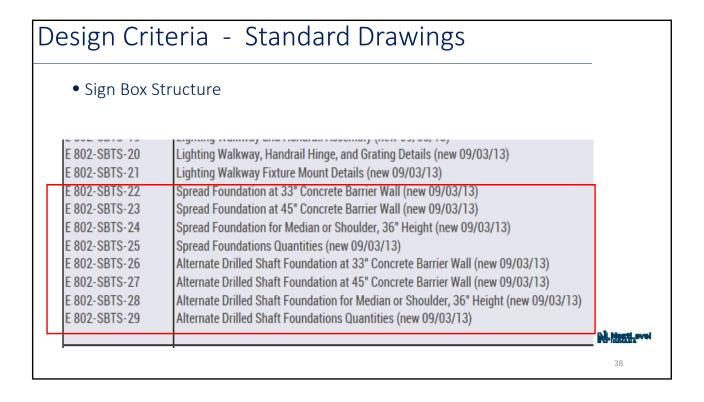


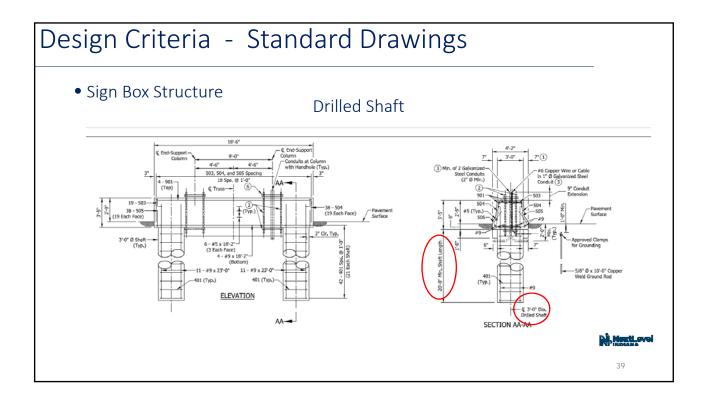
Figure C13.6.1.1-1—Foundation in Cohesive Soil




Figure C13.6.1.1-2—Foundation in Cohesionless Soil




Design Criteria - Types


- Types in the Standard Drawings
 - Drilled Shaft or Spread Footing for Box Truss Structures
 - Drilled Shafts for Cantilever Structures

Design Criteria - Standard Drawings

• Sign Box Structure – Spread Footing

Advantages

- Better for new roadway construction
- Can be installed outside travelway limits

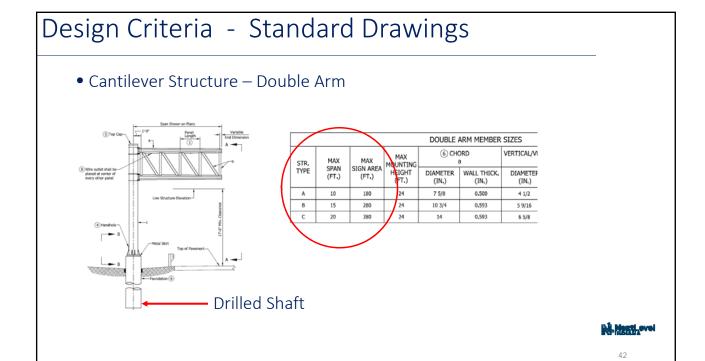
Disadvantages

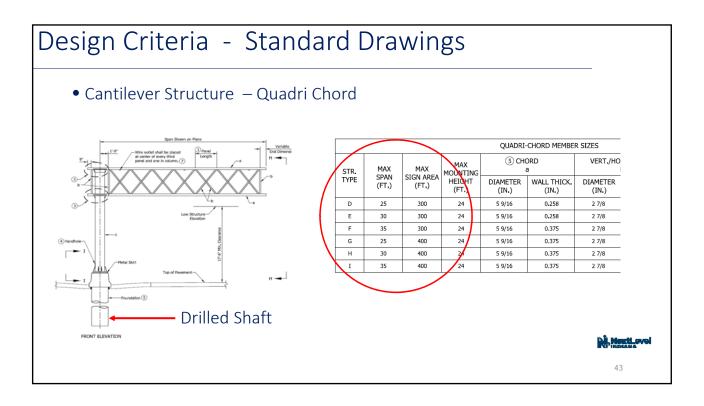
- Requires bigger area of roadway disturbance.
- Requires longer construction time (excavation, forms, backfill, paving, forms, MOT...)

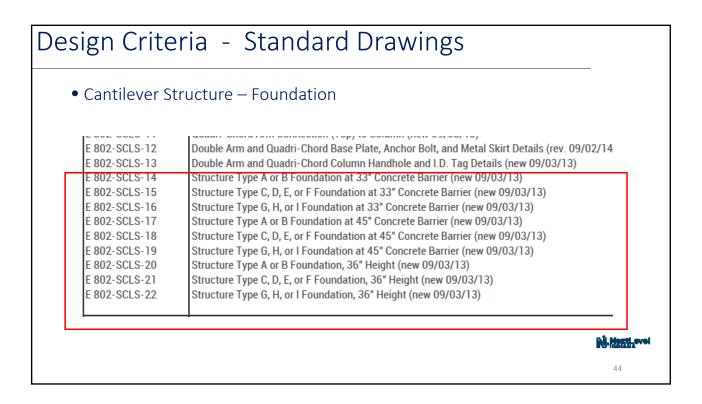
Design Criteria - Standard Drawings

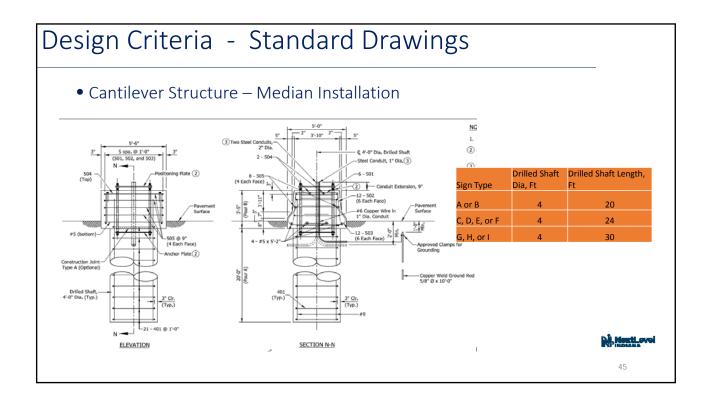
• Sign Box Structure – Drilled Shafts

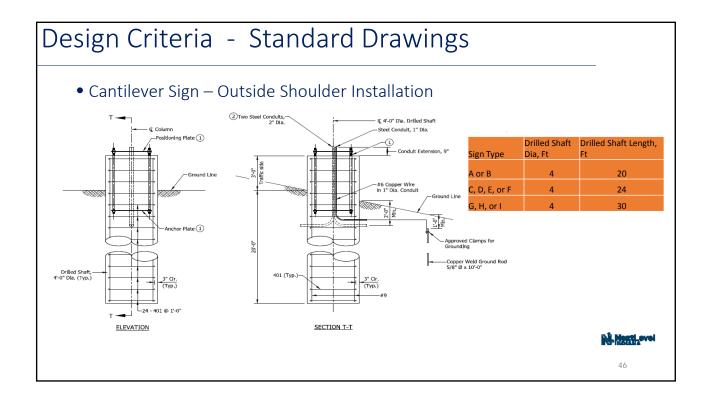
Advantages

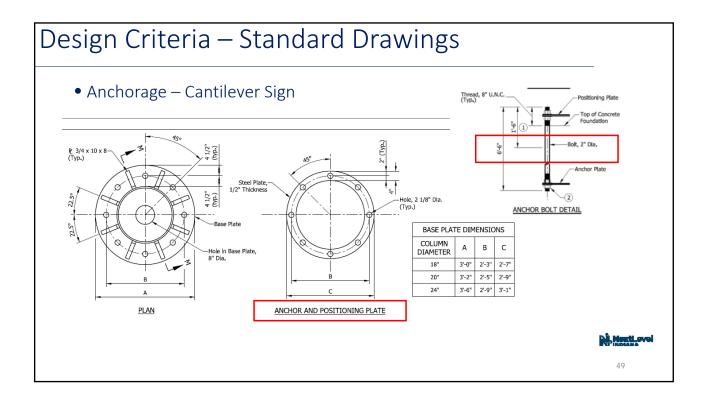

- Less roadway disturbance Space Limitation
- Better for existing roadway/ median or tight locations
- Shorter construction time


Disadvantages


- Require Casing if water table or caving soil encountered
- More Expensive: Mob & Demob for drilling equipment


If Both can be used, Use cost to determine Foundation Type




Design Criteria

- Anchorage Design/ Code Check ACI Appendix D
 - Steel Strength of Anchor in tension
 - Concrete Breakout Strength in tension
 - Pullout Strength of Anchor in concrete
 - For headed Anchor: Concrete Side-Face blockout Strength of Anchor In tension
 - Steel Strength of Anchor in Shear
 - Concrete Breakout Strength in shear
 - Concrete Pryout Strength of Anchor in shear
 - Interaction of Tensile and Shear Forces

47

Anchorage – Sign Box Truss Strutcures Anchorage – Sign Box

Design Criteria

- Specifications/ Material Properties Section 700, 800, 900
 - Concrete: Class A for Spread Footing & Drilled Shaft Foundation
 - Reinforcing Steel: Grade 60 Epoxy Coated
 - Anchor bolts, Nuts, and washers: ASTM F1554 Grade 36
 - Top End of Anchor bolts: Coated or Galvanized
 - Surface Seal Top Surface and Sides of foundation above the ground

Practice Pointers

- General Requirements IDM 502-1.01(10)
 - On Barrier Wall: Transition Taper = 30:1 to connect to adjacent barrier wall.
 - Provide expansion Joints at the at transitions and pavement joint locations within the transition area.
 - Drainage shall be accounted for in the vicinity of the structure. IDM 502-1.01(10).

51

Practice Pointers

Summary/ Recommendations

- Coordinate with other roadside safety elements
- Pay attention to tight location in urban areas.
- Properly quantify Wind & Ice loads,
- Pay attention to anchorage design and details.
- Proper load path and proper load analysis.
- Try not to use soil borings from another location
- Pay attention to excavation limits adjacent to travelway, mainly for spread foundation
- Structural elements do not fit/ Anchor bolts or positioning plate not oriented properly.

